PALEOCEANOGRAPHY, doi:10.1029/2011PA002139
Key Points
- Single specimens of foraminifera are used as a recorded of ENSO variability
- ENSO has remained remarkable constant over the past millennium
- MCA characterized by departures toward stronger/more frequent La Nina
We present a reconstruction of El Niño Southern Oscillation (ENSO) variability spanning the Medieval Climate Anomaly (MCA, A.D. 800-1300) and the Little Ice Age (LIA, A.D. 1500-1850). Changes in ENSO are estimated by comparing the spread and symmetry of δ18O values of individual specimens of the thermocline-dwelling planktonic foraminifer Pulleniatina obliquiloculata extracted from discrete time horizons of a sediment core collected in the Sulawesi Sea, at the edge of the western tropical Pacific warm pool. The spread of individual δ18O values is interpreted to be a measure of the strength of both phases of ENSO while the symmetry of the δ18O distributions is used to evaluate the relative strength/frequency of El Niño and La Niña events. In contrast to previous studies, we use robust and resistant statistics to quantify the spread and symmetry of the δ18O distributions; an approach motivated by the relatively small sample size and the presence of outliers. Furthermore, we use a pseudo-proxy approach to investigate the effects of the different paleo-environmental factors on the statistics of the δ18O distributions, which could bias the paleo-ENSO reconstruction. We find no systematic difference in the magnitude/strength of ENSO during the Northern Hemisphere MCA or LIA. However, our results suggest that ENSO during the MCA was skewed toward stronger/more frequent La Niña than El Niño, an observation consistent with the medieval megadroughts documented from sites in western North America.
No comments:
Post a Comment