Saturday, September 10, 2016

New Scaffeta paper finds planetary resonance drives cosmic rays & climate change

A new paper by Dr. Nicola Scafetta et al published in Earth Science Reviews finds an astronomical origin of the ~2100-2500 year Hallstatt cycle found in "cosmogenic radioisotopes  (14C and 10Be) and in paleoclimate records throughout the Holocene."

The authors,

"show strong evidences for an astronomical origin of this cycle. Namely, this oscillation is coherent to a repeating pattern in the periodic revolution of the planets around the Sun: the major stable resonance involving the four Jovian planets - Jupiter, Saturn, Uranus and Neptune - which has a period of about p = 2318 years. Inspired by the Milanković’s theory of an astronomical origin of the glacial cycles, we test whether the Hallstatt cycle could derive from the rhythmic variation of the circularity of the solar system disk assuming that this dynamics could eventually modulate the solar wind and, consequently, the incoming cosmic ray flux and/or the interplanetary/cosmic dust concentration around the Earth-Moon system."
According to the authors,
"the rhythmic contraction and expansion of the solar system driven by a major resonance involving the movements of the four Jovian planets appear to work as a gravitational/electromagnetic pump that increases and decreases the cosmic ray and dust densities inside the inner region of the solar system, which then modulate both the radionucleotide production and climate change by means of a cloud/albedo modulation."




















Abstract

An oscillation with a period of about 2100–2500 years, the Hallstatt cycle, is  found in cosmogenic radioisotopes (14C and 10Be) and in paleoclimate records throughout the Holocene. This oscillation is typically associated with solar variations, but its primary physical origin remains uncertain. Herein we show strong evidences for an astronomical origin of this cycle. Namely, this oscillation is coherent to a repeating pattern in the periodic revolution of the planets around the Sun: the major stable resonance involving the four Jovian planets - Jupiter, Saturn, Uranus and Neptune - which has a period of about p = 2318 years. Inspired by the Milanković’s theory of an astronomical origin of the glacial cycles, we test whether the Hallstatt cycle could derive from the rhythmic variation of the circularity of the solar system disk assuming that this dynamics could eventually modulate the solar wind and, consequently, the incoming cosmic ray flux and/or the interplanetary/cosmic dust concentration around the Earth-Moon system. The orbit of the planetary mass center (PMC) relative to the Sun is used as a proxy. We analyzed how the instantaneous eccentricity vector of this virtual orbit varies from 13,000 BCE to 17,000 CE. We found that it undergoes a kind of pulsations and clearly presents rhythmic contraction and expansion patterns with a 2318 year period together with a number of already known faster oscillations associated to the planetary orbital stable resonances. There exists a quasi π/2 phase shift between the 2100–2500 year oscillation found in the 14C record and that of the calculated eccentricity function. Namely, at the Hallstatt-cycle time scale, a larger production of radionucleotide particles occurs while the Sun-PMC orbit evolves from more elliptical shapes (e ≈ 0.598) to more circular ones (e ≈ 0.590), that is while the orbital system is slowly imploding or bursting inward; a smaller production of radionucleotide particles occurs while the Sun-PMC orbit evolves from more circular shapes (e ≈ 0.590) to a more elliptical ones (e ≈ 0.598), that is while the orbital system is slowly exploding or bursting outward. Since at this timescale the PMC eccentricity variation is relatively small (e = 0.594 ± 0.004), the physical origin of the astronomical 2318 year cycle is better identified and distinguished from faster orbital oscillations by the times it takes the PMC to make pericycles and epicycles around the Sun and the times it takes to move from minimum to maximum distance from the Sun within those arcs. These particular proxies reveal a macroscopic 2318 year period oscillation, together with other three stable outer planet orbital resonances with periods of 159, 171 and 185 years. This 2318 year oscillation is found to be spectrally coherent with the Δ14C Holocene record with a statistical confidence above 95%, as determined by spectral analysis and cross wavelet and wavelet coherence analysis. At the Hallstatt time scale, maxima of the radionucleotide production occurred when, within each pericycle-apocycle orbital arc, the time required by the PMC to move from the minimum to the maximum distance from the Sun varies from about 8 to 16 years while the time required by the same to move from the maximum to the minimum distance from the Sun varies from about 7 to 14 years, and vice versa. Thus, we found that a fast expansion of the Sun-PMC orbit followed by a slow contraction appears to prevent cosmic rays to enter within the system inner region while a slow expansion followed by a fast contraction favors it. Similarly, the same dynamics could modulate the amount of interplanetary/cosmic dust falling on Earth. Indeed, many other stable orbital resonance frequencies (e.g. at periods of 20 years, 45 years, 60 years, 85 years, 159–171–185 years) are found in radionucleotide, solar, aurora and climate records, as determined in the scientific literature. Thus, the result supports a planetary theory of solar and/or climate variation that has recently received a renewed attention. In our particular case, the rhythmic contraction and expansion of the solar system driven by a major resonance involving the movements of the four Jovian planets appear to work as a gravitational/electromagnetic pump that increases and decreases the cosmic ray and dust densities inside the inner region of the solar system, which then modulate both the radionucleotide production and climate change by means of a cloud/albedo modulation.

Wednesday, September 7, 2016

New paper finds climate change & CO2 levels explained as a function of lagged solar activity

A new paper under open review for Earth System Dynamics finds Holocene climate change can be explained on the basis of lagged responses to changes of solar activity. According to the author,
This paper analyzes the lagged responses of the Earth’s climate system, as part of cosmic-solar-terrestrial processes. Firstly, we analyze and model the lagged responses of the Earth’s climate system, previously detected for geological and orbital scale processes, with simple non-linear functions, and we estimate a correspondent lag of ~1600-yr for the recently detected ~9500-yr scale solar recurrent patterns. Secondly, a recurrent and lagged linear influence of solar variation on volcanic activity and carbon dioxide (CO2) has been assessed for the last millennia, and extrapolated for future centuries and millennia. As a consequence we found that, on one side, the recent CO2 increase can be considered as a lagged response to solar activity, and, on the other side, the continental tropical climate signal during late Holocene can be considered as a sum of three lagged responses to solar activity, through direct, and indirect (volcanic and CO2), influences with different lags of around 40, 800 and 1600 years. 
Note the ~1600 year lag of response to solar activity is essentially the same as the well-known ~1500 year "never-ending climate cycle" identified by numerous peer-reviewed, published papers.

Note also the paper explains CO2 levels on the basis of a lagged function of solar activity, due to variations in solar heating of the oceans, and ocean in-gassing and out-gassing of CO2, not as a result of the ~4% CO2 contribution from mankind. 

The paper shows the (noisy) 1600-year climate cycle in the ice core 10Be proxy of solar activity of the past 1800 years peaked in the 1900's. The orange lines are modeled on the basis of a function of three lagged compenents of solar activity cycles and is currently on a downswing until ~2100, indicating potentially cooler Earth temperatures ahead. 




According to the author, "we propose the global ocean circulation processes, that include the well known meridional overturning circulation, and the thermohaline circulation, as a global mechanism capable of explaining the lagged forcing (volcanic activity & CO2) and continental tropical climate responses to solar activity variations."



The Earth’s climate system recurrent & multi-scale lagged responses: empirical law, evidence, consequent solar explanation of recent CO2 increases & preliminary analysis


Jorge Sánchez-Sesma

Received: 18 Aug 2016 – Accepted: 31 Aug 2016 – Published: 07 Sep 2016

Abstract. This paper analyzes the lagged responses of the Earth’s climate system, as part of cosmic-solar-terrestrial processes. Firstly, we analyze and model the lagged responses of the Earth’s climate system, previously detected for geological and orbital scale processes, with simple non-linear functions, and we estimate a correspondent lag of ~1600-yr for the recently detected ~9500-yr scale solar recurrent patterns. Secondly, a recurrent and lagged linear influence of solar variation on volcanic activity and carbon dioxide (CO2) has been assessed for the last millennia, and extrapolated for future centuries and millennia. As a consequence we found that, on one side, the recent CO2 increase can be considered as a lagged response to solar activity, and, on the other side, the continental tropical climate signal during late Holocene can be considered as a sum of three lagged responses to solar activity, through direct, and indirect (volcanic and CO2), influences with different lags of around 40, 800 and 1600 years. Thirdly, we find more examples of this ~1600-yr lag, associated with oceanic processes throughout the Holocene, manifested in the mineral content of SE Pacific waters, and in a carbon cycle index, CO3, in the Southern Atlantic. Fourthly, we propose the global ocean circulation processes, that include the well known meridional overturning circulation, and the thermohaline circulation, as a global mechanism capable of explaining the lagged forcing (volcanic activity & CO2) and continental tropical climate responses to solar activity variations. Finally, some conclusions are provided for the lagged responses of the Earth's climate system with their influences and consequences on present and future climate, and implications for climate modelling are preliminarily analyzed.