Wednesday, June 15, 2016

New paper demonstrates the gravito-thermal greenhouse effect on Jupiter is due to pressure, not greenhouse gases

A paper published in Science June 3, 2016, Peering through Jupiter's clouds with Radio Spectral Imaging, demonstrates the gravito-thermal greenhouse effect on Jupiter and that atmospheric temperatures are a function of pressure, independent of greenhouse gas concentrations. Jupiter is a gaseous planet with an atmosphere comprised almost entirely of the non-greenhouse gases hydrogen and helium, yet is capable of generating 67% more radiation than it receives from the Sun, and has estimated temperatures at the Jovian core of more than 20,000°C, more than three times as hot as the surface of the Sun. Jupiter, however, only receives 3.6% as much solar radiation per meter squared as the Earth. The only possible explanation for this "temperature enhancement" or "greenhouse effect" is atmospheric mass/pressure/gravity (the gravito-thermal greenhouse effect of Maxwell/Poisson/Clausius et al), and which is entirely independent of greenhouse gas concentrations. 

Prior work has confirmed the gravito-thermal greenhouse effect on 6 8 planets including Earth, and why this falsifies the theory of catastrophic man-made global warming. On the basis of this new paper, we find the gravito-thermal greenhouse effect also holds for Jupiter and that the pressure vs. temperature curve satisfies the Poisson Relation of the gravito-thermal greenhouse effect.

Referring to fig. 1 of the paper, we find at 0.1 bar pressure on Jupiter, the corresponding temperature is~112°K, and at 11 bars pressure corresponds to 400°K or 260°F:


Fig 1 from the paper. The dotted line is the atmospheric temperature vs. pressure curve on Jupiter. At 11 bars pressure, the temperature is 400°K or 127°C or 260°F.  
This satisfies the Poisson Relation (which in turn is derived from the Ideal Gas Law) previously demonstrated on 6 8 other celestial bodies in our solar system:


T/To = (P/Po)^0.286 ~= 400°K/112°K = (11 bar/0.1 bar)^.286

and once again demonstrates that the catastrophic anthropogenic global warming (CAGW) theory is a myth, that atmospheric temperatures are controlled by mass/gravity/pressure and are independent of greenhouse gas concentrations on any of these 9 planets with atmospheres, including Earth. Adding additional CO2 plant food to the atmosphere will undoubtedly green the Earth, but Earth's climate sensitivity to CO2 is effectively zero. 



Fig. 7. 
a)   Dry adiabatic response of the air/surface temperature ratio to pressure changes in the free atmosphere according to Poisson’s formula. The reference pressure is arbitrarily assumed to be po=100 kPa;b) The SB radiation law expressed as a response of a blackbody temperature ratio to variation in photon pressure (see text for details).



image
image
Figure 6. Temperature/potential temperature ratio as a function of atmospheric pressure according to the Poisson formula based on the Gas Law (Po = 100 kPa.). Note the striking similarity in shape with the curve in Fig. 5.

NASA Jupiter Fact Sheet


Jupiter

Jupiter/Earth Comparison


Bulk parameters

                                   Jupiter      Earth   Ratio (Jupiter/Earth)
Mass (1024 kg)                      1,898.19    5.9724      317.83 
Volume (1010 km3)                 143,128     108.321      1321.33
Radius (1 bar level) (km)
    Equatorial                     71,492       6,378.1      11.209    
    Polar                          66,854       6,356.8      10.517
Volumetric mean radius (km)        69,911       6,371.0      10.973
Ellipticity                         0.06487     0.00335      19.36 
Mean density (kg/m3)                1,326       5,514         0.240 
Gravity (eq., 1 bar) (m/s2)        24.79        9.80          2.530 
Acceleration (eq., 1 bar) (m/s2)   23.12        9.78          2.364 
Escape velocity (km/s)             59.5        11.19          5.32
GM (x 106 km3/s2)                 126.687       0.39860     317.83 
Bond albedo                         0.343       0.306         1.12
Visual geometric albedo             0.52        0.367         1.42  
Visual magnitude V(1,0)            -9.40       -3.86           -
Solar irradiance (W/m2)            50.26     1361.0           0.037
Black-body temperature (K)        109.9       254.0           0.433
Moment of inertia (I/MR2)           0.254       0.3308        0.768 
J2 (x 10-6)                        14,736    1082.63         13.611    
Number of natural satellites       67           1
Planetary ring system             Yes          No

Orbital parameters

                                   Jupiter      Earth   Ratio (Jupiter/Earth)
Semimajor axis (106 km)             778.57      149.60        5.204   
Sidereal orbit period (days)      4,332.589     365.256      11.862   
Tropical orbit period (days)      4,330.595     365.242      11.857
Perihelion (106 km)                 740.52      147.09        5.034      
Aphelion (106 km)                   816.62      152.10        5.369
Synodic period (days)               398.88        -             -
Mean orbital velocity (km/s)         13.06       29.78        0.439    
Max. orbital velocity (km/s)         13.72       30.29        0.453        
Min. orbital velocity (km/s)         12.44       29.29        0.425       
Orbit inclination (deg)               1.304       0.000         -
Orbit eccentricity                    0.0489      0.0167      2.928
Sidereal rotation period (hours)      9.9250*    23.9345      0.415  
Length of day (hrs)                   9.9259     24.0000      0.414
Obliquity to orbit (deg)              3.13       23.44        0.134 
Inclination of equator (deg)          3.13       23.44        0.134                                               
* System III (1965.0) coordinates

Jovian Atmosphere

Surface Pressure: >>1000 bars  
Temperature at 1 bar: 165 K (-108 C)
Temperature at 0.1 bar: 112 K (-161 C)
Density at 1 bar: 0.16 kg/m3
Wind speeds
   Up to 150 m/s<30 40="" degrees="" latitude="" m="" s="" to="" up="">
Scale height: 27 km
Mean molecular weight: 2.22 
Atmospheric composition (by volume, uncertainty in parentheses)
    Major:       Molecular hydrogen (H2) - 89.8% (2.0%); Helium (He) - 10.2% (2.0%)
    Minor (ppm): Methane (CH4) - 3000 (1000); Ammonia (NH3) - 260 (40);
                 Hydrogen Deuteride (HD) - 28 (10); Ethane (C2H6) - 5.8 (1.5);
                 Water (H2O) - 4 (varies with pressure)
    Aerosols:    Ammonia ice, water ice, ammonia hydrosulfide

Sunday, June 5, 2016

How the West got healthy and prosperous

How can it be that – after countless millennia of malnutrition, disease,  wretched poverty and early death – so many mostly western nations became healthy and prosperous in just 200 years? Matt Ridley says “ideas started having sex.” Deidre McCloskey opines that equality of social dignity and before the law emboldened people to invest, invent and take risks. Both are absolutely true.

However, as I discuss in this week’s article, a number of other essential factors also played key roles: foremost among them the scientific method and abundant, reliable, affordable energy, primarily from fossil fuels. The results were astounding – so much so that today the big question is, How have so many governments succeeded in preventing prosperity from happening?

Thank you for posting my informative and entertaining article, quoting from it, and forwarding it to your friends and colleagues.

Best regards,
Paul      
                                   
How the West got healthy and prosperous

Vital ingredients included the scientific method and fossil fuels – truths we forget at our peril

By Paul Driessen

Several years ago, physician, statistician, sword swallower and vibrant lecturer Hans Rosling produced a fascinating 4-minute video that presented 120,000 data points and showcased how mostly western nations became healthy and prosperous in just 200 years – after countless millennia of malnutrition, disease,  wretched poverty and early death.

More recently, professor of history and economics Deidre McCloskey provided some clues as to why and how this happened. In a Wall Street Journal article outlining “how the West (and the rest) got rich,” she notes that it wasn’t just Karl Marx’s “exploited workers” or Adam Smith’s “virtuously saved capital, nor was it only Hernando DeSoto and Douglas North’s essential property rights and other legal institutions.

Perhaps the most vital ingredient was that over those two centuries “ideas started having sex,” as author Matt Ridley described the process in The Rational Optimist. It enabled innovators to make discoveries and devise technological wonders, often through coincidental Connections that historian James Burke found among seemingly unrelated earlier inventions, to bring us television, computers and other marvels.

Why did ideas suddenly start having sex? McCloskey asks. One reason was the printing press, which enabled more people to read and share ideas. However, she cites two other principal developments: liberty and equality. Liberated people are ingenious, she observes – free to pursue happiness, and ideas; free to try and fail, and try again; free to pursue their own self-interests, and thereby better mankind.

Equality of social dignity and before the law emboldened people to invest, invent and take risks. Once accidents of parentage, titles, inherited wealth or formal education no longer controlled destinies or opportunities, the innate inspiration, perspiration and perseverance of a Franklin, Bell, Edison, Wright, Kettering, Steinmetz, Ford, Benz, Borlaug and countless others could be unleashed.

“Supposedly inferior races and classes and ethnicities proved not to be so,” McCloskey says. “Ordinary men and women didn’t need to be directed from above and, when honored and left alone, became immensely creative.” That’s an important message in the splendid British television series Downton Abbey, as well: when societal restrictions are relaxed, many can rise to new callings and heights.

Many other factors played key roles in this incredible progress. Two are especially important.
The scientific method begins with an hypothesis about how some component of the natural world works, and a calculation or forecast of what would happen if the concept is correct. Scientists then subject the hypothesis and prediction to experiment. If confirmed by data and observations, we have a new theory or law of nature; if not, the hypothesis is wrong.

This process brought wondrous advances – often through long, laborious tinkering and testing, and often amid heated, acrimonious debate about which hypothesis was correct (the miasma or germ theory of disease), which system was better (direct or alternating current), and countless other investigations.

Abundant, reliable, affordable energy – the vast majority of it fossil fuels – made all this and much more possible. It carried us from human and animal muscle, wood, dung and water wheels, to densely packed energy that could reliably power factories, laboratories, schools, hospitals, homes and offices. 

Those fuels also run equipment that removes harmful pollutants from our air and water, and they ended our unsustainable reliance on whale oil, saving those magnificent mammals from extinction.
Today, coal, oil and natural gas still provide 80% of America’s and the world’s energy, for transportation, communication, refrigeration, heat, lights, manufacturing, entertainment and every other component of modern life. Together, the scientific method and industrial-grade energy enable our Ultimate Resource – the human mind – to create more new ideas, institutions and technologies that make life for poor people in wealthier countries better, healthier, fuller and longer than even royalty enjoyed a mere century ago.

Medical research discovered why people died from wounds; the true causes of malaria, smallpox, cholera and other diseases; antibiotics, vaccinations, insecticides and pharmaceuticals to combat disease and improve our overall well-being; anesthesia and surgical techniques that permit life-saving operations and organ transplants; sanitation (toilets, soap, trash removal) and water purification; and countless other advances that raised the average American’s life expectancy from 46 in 1900 to 76 today for men and 81 for women.

Internal combustion engines replaced horses for plows and transportation, and rid city streets of manure, urine and carcasses, while creating new problems that later generations toiled to address. Today we can travel the world in hours and ship produce, clothing and other products to the globe’s farthest corners.

Mechanized agriculture – coupled with modern fertilizers, hybrid and GMO seeds, drip irrigation and other advances – produce bumper crops that feed billions, using less land, water and insecticides.
Houses and other buildings are built better and stronger, to keep out the cold and heat and disease-carrying insects, better survive hurricanes and earthquakes, and connect their inhabitants with entertainment and information centers from all over the planet, and beyond.

Modern mining techniques and technologies find, extract and process the incredible variety of metals and other raw materials required to make the mechanized equipment and factories required to produce the energy we need and grow or make everything we eat, wear or use.

If energy is the Master Resource that makes all of this possible, electricity is the king of modern energy. Imagine your life without electricity – generated by coal, natural gas, nuclear, hydro, wind or solar facilities, or batteries. Imagine life before electricity, or before the internet and cell phones put the fullness of human knowledge and entertainment instantly in the palm of your hand.

At least one more factor helped to unleash this sudden surge of invention, progress, health and prosperity. A relatively new legal entity, the corporation, organized, harnessed and directed people, money and other resources toward common purposes. A growing private sector – free enterprises and entrepreneurs – put corporate and other ideas, labor and investors’ money on the line, assisted by evolving financial and investment systems and practices, while legal and government institutions provided the ethical and regulatory frameworks within which these entities are expected to operate. 
Numerous “invisible hands” worked together across continents and oceans, often without even knowing their counterparts exist, to bring us products as simple as a pencil or as complex as a cell phone.

So we are left with a profound question. Amid all this health, prosperity and longevity for so many – why do so many still struggle on the edge of survival? Why do two billion still have minimal electricity and another 1.3 people still have none at all? Why do two billion still exist on $3 per day? Why do a half-million still die every year from malaria? five million more from respiratory and intestinal diseases?

The formula for health and prosperity is no secret. It is readily available on your cell phone. Indeed, says Leon Louw, the real “economic miracle” today is not found in South Korea, Singapore or Botswana – but in North Korea, Venezuela and most of Africa.

What should fascinate us is the miracle of poverty – the way inept, corrupt, greedy, centrally planned, hyper-regulated governments have prevented prosperity from happening. What should outrage us is that callous UN bodies, NGOs and activists have imposed their eco-imperialist agendas, and prevented countries from acquiring the property rights and technologies that made so many nations healthy and rich.

What should concern us is that many forces are conspiring to roll back the free enterprise, free speech, scientific method, and reliable, affordable energy that make modern living standards possible. 

Having them now does not guarantee them tomorrow. Failure to safeguard these essential foundations could take us on the path to joining the ranks of the “miracles of poverty” and FRCs: Formerly Rich Countries.

Paul Driessen is senior policy analyst for the Committee For A Constructive Tomorrow (www.CFACT.org) and author of Eco-Imperialism: Green power - Black death.