Thursday, April 18, 2013

New paper finds effect of volcanoes on climate has been overestimated by factor of 2, & finds lower climate sensitivity to CO2

A paper published today in Atmospheric Chemistry & Physics finds the cooling effect of volcanic eruptions on global temperature has been overestimated by a factor of 2, due to "prior neglect of ocean circulation" of the natural ocean oscillation the Atlantic Multidecadal Oscillation [AMO]. Consequently, the authors calculate that climate sensitivity to CO2 is about 38% less than claimed by the IPCC. The paper adds to several other recent papers demonstrating that IPCC assumptions of climate sensitivity to CO2 are exaggerated.

[climate sensitivity calculations on page 2044: 1.89C, 38% less than the IPCC central estimate of 3.03C].

Addendum: Coincidentally, another paper was also published today in JGR finding that climate models are unable to reproduce the effect of volcanic eruptions on water vapor and hence climate.

Atmos. Chem. Phys., 13, 3997-4031, 2013
www.atmos-chem-phys.net/13/3997/2013/
doi:10.5194/acp-13-3997-2013


An empirical model of global climate – Part 1: A critical evaluation of volcanic cooling

T. Canty1, N. R. Mascioli1,*, M. D. Smarte2,**, and R. J. Salawitch1,2,3 

1Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
2Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
3Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
*now at: Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
**now at: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA

Abstract. Observed reductions in Earth's surface temperature following explosive volcanic eruptions have been used as a proxy for geoengineering of climate by the artificial enhancement of stratospheric sulfate. Earth cools following major eruptions due to an increase in the reflection of sunlight caused by a dramatic enhancement of the stratospheric sulfate aerosol burden. Significant global cooling has been observed following the four major eruptions since 1900: Santa María, Mount Agung, El Chichón and Mt. Pinatubo, leading IPCC (2007) to state "major volcanic eruptions can, thus, cause a drop in global mean surface temperature of about half a degree Celsius that can last for months and even years". We use a multiple linear regression model applied to the global surface temperature anomaly to suggest that exchange of heat between the atmosphere and ocean, driven by variations in the strength of the Atlantic Meridional Overturning Circulation (AMOC), has been a factor in the decline of global temperature following these eruptions. The veracity of this suggestion depends on whether sea surface temperature (SST) in the North Atlantic, sometimes called the Atlantic Multidecadal Oscillation, but here referred to as Atlantic Multidecadal Variability (AMV), truly represents a proxy for the strength of the AMOC. Also, precise quantification of global cooling due to volcanoes depends on how the AMV index is detrended. If the AMV index is detrended using anthropogenic radiative forcing of climate, we find that surface cooling attributed to Mt. Pinatubo, using the Hadley Centre/University of East Anglia surface temperature record, maximises at 0.14 °C globally and 0.32 °C over land. These values are about a factor of 2 less than found when the AMV index is neglected in the model and quite a bit lower than the canonical 0.5 °C cooling usually attributed to Pinatubo. This result is driven by the high amplitude, low frequency component of the AMV index, demonstrating that reduced impact of volcanic cooling upon consideration of the AMV index is driven by variations in North Atlantic SST that occur over time periods much longer than those commonly associated with major volcanic eruptions. The satellite record of atmospheric temperature from 1978 to present and other century-long surface temperature records are also consistent with the suggestion that volcanic cooling may have been over estimated by about a factor of 2 due to prior neglect of ocean circulation. Our study suggests a recalibration may be needed for the proper use of Mt.~Pinatubo as a proxy for geoengineering of climate. Finally, we highlight possible shortcomings in simulations of volcanic cooling by general circulation models, which are also being used to assess the impact of geoengineering of climate via stratospheric sulfate injection.

 Final Revised Paper (PDF, 9366 KB)   Supplement (828 KB)   Discussion Paper (ACPD)   

5 comments:

  1. And Prof Rao noted that GCR's are responsible for 44% lower climate sensitivity also, in his 2011 paper. Prof Rao is a rather eminent scientist.

    Take 38% and 44% off and the remaining climate sensitivity for CO2 is looking a whole lot like Lindzen's number.

    ReplyDelete
    Replies
    1. Hmmm interesting - I hadn't seen that paper.

      Take off another big chunk attributable to black carbon shown by another recent paper and what do we have left? Essentially nothing.

      Delete
  2. warmist blog finds sensitivity on the lower end - see comment by KAP -

    http://rabett.blogspot.com/2013/04/how-much-with-earths-temerature-rise.html

    ReplyDelete
  3. another blog finds low end sensitivity:

    http://redneckphysics.blogspot.com/2013/05/adjusting-co2-tracer-signal.html

    ReplyDelete
  4. another paper finding sensitivity 1/2 of IPCC est

    http://www.pnas.org/content/110/6/2058.short

    ReplyDelete