Wednesday, June 12, 2013

New paper finds another non-hockey-stick in the tropical Pacific

A paper published today in Geophysical Research Letters finds another non-hockey-stick from reconstructed sea surface temperatures [SSTs] in the tropical Pacific over the past 850 years. The data shows temperatures were as warm during portions of the Little Ice Age in the 1200's - 1400's as at the end of the record.

In addition, the authors find that state-of-the-art climate models are unable to reproduce the tropical Pacific temperature changes of the past 850 years, flatly stating, "the model and the [temperature] reconstruction do not agree with each other." The authors note "These findings imply that the response of the tropical Pacific to future forcings [such as solar & volcanic activity, clouds, and greenhouse gases] may be even more uncertain than portrayed by state-of-the-art models because there are potentially important sources of century-scale variability that these models do not simulate."


Temperature reconstruction of tropical Pacific sea surface temperature over the past 850 years. Added red line shows  temperatures were as warm at the end of the record as during portions of the Little Ice Age in the 1200's - 1400's. Note: the reconstruction does not extend back to the Medieval Warming Period 1000 years ago. 

Prior posts on non-hockey-sticks

Full paper available here:

Characterizing decadal to centennial variability in the equatorial Pacific during the last millennium

T. R. Ault et al


Abstract:  The magnitude of sea surface temperature variability in the NINO3.4 region of the equatorial Pacific on decadal and longer timescales is assessed in observational data, state-of-the art (CMIP5) climate model simulations, and a new ensemble of paleoclimate reconstructions. On decadal to multidecadal timescales, variability in these records is consistent with the null hypothesis that it arises from “multivariate red noise” (a multivariate Ornstein-Uhlenbeck process) generated from a linear inverse model of tropical ocean-atmosphere dynamics. On centennial and longer timescales, both a last millennium simulation performed using the Community Climate System Model 4 (CCSM4) and the paleoclimate reconstructions have variability that is significantly stronger than the null hypothesis. However, the time series of the model and the reconstruction do not agree with each other. In the model, variability primarily reflects a thermodynamic response to reconstructed solar and volcanic activity, whereas in the reconstruction, variability arises from either internal climate processes, forced responses that differ from those in CCSM4, or non-climatic proxy processes that are not yet understood. These findings imply that the response of the tropical Pacific to future forcings may be even more uncertain than portrayed by state-of-the-art models because there are potentially important sources of century-scale variability that these models do not simulate.

No comments:

Post a Comment